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Abstract: 

Advancements in technology, including the Internet of Things (IoT) and Artificial Intelligence (AI), greatly 

impact agriculture. The study investigates the statistical applications of AI-driven robotic devices based on 

the IoT as a basic emphasis. Using manual effort and chemical fertilizers, traditional farming can be highly 

attributed to inefficiency, health problems and environmental effects. The paper proposes an AgriBotIQ, a 

revolutionary platform that uses robotics based on IoT to monitor and analyse with accurate participation 

in plant management. Autonomous robots can collect information based on plants and their habitats by 

using imaging devices and sensors like soil moisture, humidity, temperature, and many others. Machine 

learning (ML) algorithms search the database for anomaly detection, threats, and crop trends. To identify 

the crops that are diseased or healthy, ML is integrated with computer vision. The suggested AgriBotIQ also 

eliminated weeds, boosting the output by neglecting unneeded waste and chemicals. The emerging IoTs have 

allowed better remote plant monitoring in more versatile and précised. Overall productivity and protection 

of crops are possible by statistical analysis and real-time notifications of the proactive decision-making 

outcomes. By combining IoT and AI, the future agricultural crop security will improve greatly.  

Keywords: Artificial intelligence, Robotics, Internet of Things, Remote control, Smart sensors, Crop 

Protection, Precision farming.   

1. Introduction  

The UN projects that by 2050, the world's population will have risen to 9.7 billion, 

calling for a 70% increase in food production. The way forward for businesses in this 
situation is to find ways to boost agricultural output while reducing the negative effects of 

conventional farming on the environment. Overuse of chemical pesticides and fertilisers 
has eroded soil, contaminated water sources, and harmed the well-being of humans and 

animals. The study wants new ideas to boost agricultural productivity in a sustainable 
and environmentally friendly way [1]. Maximum production, optimal decision-making, 
effective use of resources, and environmental sustainability are all guaranteed by "smart 

farming" thanks to objective data obtained by sensors. The cornerstone of sustainable 
agriculture will be methodologies grounded in robotic solutions and artificial intelligence 

[2]. Improved decision-making is possible with the use of drones and satellites for remote 
sensing by closely monitoring soil health, plant energy, and various other environmental 

parameters [3]. Artificial Neural Networks, ANNs, and other contemporary AI problem-
solving tools enable us to address unique agricultural issues. For farms, "smart farming" 
means implementing state-of-the-art technology like AI and the IoT, which completely 

changes how things are done [4]. The Internet of Things (IoT), cloud computing, and 
machine learning allow for all-encompassing environmental monitoring. By categorizing 
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data, researchers may choose the optimal circumstances for the growth of different types 

of crops [5]. 
By monitoring several agricultural metrics, the Indian-based Fasal IoT platform assists 

farmers in making more informed decisions regarding their operations. An AI-powered 
engine powers the site. The application of AI and data analytics enables farmers to attain 
future crop control and optimum productivity [6]. It takes effort and time to attend to all 

the requisite logistics, such as collecting, sorting, shipping, and marketing crops. Better 
agro-business practices can be achieved using smart agriculture technologies to address 

and alleviate these challenges [7]. Precision farming is one sustainable option; it increases 
output with precisely determined inputs while decreasing the usage of inputs that could 

be damaging to the environment, such as pesticides [8]. To increase productivity, decrease 
input costs, and improve crop yields and quality per worker, a new method called "smart 
farming" is being implemented [9]. The study employs cutting-edge ICT techniques such 

as the Internet of Things (or IoT global positioning systems (GPS), sensors, robotics, 
drones, actuators, precision machinery, and data analytics to ascertain the farmers' needs 

and put suitable solutions into action [10].  
The grain yield mapping framework includes sensors for moisture, grain volume, GPS 

(global positioning system) antenna and receiver, and travel speed. Crop yield monitoring 
uses grain flow sensors, which use mass and volume flow methods. A yield sensor 
measures the stream rate every one to two seconds during collecting or the harvested 

amount per unit area [11]. With the help of autonomous robots, weeding becomes much 
more efficient, and less pesticide is used. Drones can be used to successfully spray 

pesticides and monitor crops without requiring an excessive amount of human labour. 
Crop readiness assessment and forecasting yields are useful tools to analyze and forecast 

the quantity of high-quality harvest available for sale [12]. Key contributions of the study 
include,  

1. To propose the AgriBotIQ approach, an IoT-enabled robotic approach that 

presents a paradigm change by allowing for precise involvement in crop 
management and real-time monitoring and analysis. 

2. Information about crops and their surroundings is collected using cameras and 
sensors that measure soil moisture and temperature. 

3. Combining machine learning with computer vision, the proposed approach can 
detect when plants are healthy, sick, or lacking nutrients. 

4. The protection of crops and total yield can be improved with real-time 

notifications and predictive analytics, which allow for proactive decision-making.  
5. The study can minimise negative effects on the environment, make better use of 

the resources, and guarantee future generations have enough to eat by using 
cutting-edge technological solutions. 

The remaining part of the study is organized as follows: Section 2 describes the various 
existing studies related to machine learning, IoT and AI technologies for smart farming; 
Section 3 describes the proposed AgriBotIQ approach of how it works on precision 

agriculture; Results and discussion based on improvement in the smart farming is given 
in section4, and the study concludes in section 5 with their future works.   
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2. Related work 

Mesías-Ruiz et al. [13] proposed the importance of AI, ML, and other developing 
technologies in protecting crops from the effects of climate change and meeting the 

increasing need for food. The study showed how crop protection has progressed from its 
earliest forms to its current state and how ML algorithms have helped with precision. 
Although other creative methods may be disregarded, the article discussed emerging 

technologies such as intelligent sensors and AI-based robots for the next generation of 
crop security systems. Shahab et al. [14] proposed smart farming powered by the IoT and 

using AI and ML algorithms to help improve agricultural productivity sustainably, which 
in turn helps achieve the Sustainable development goals (SDGs) set out by the United 

Nations. The article focused on the most recent findings in smart farming, which 
emphasizes the capabilities of machines and the application of UAVs and robots in 
farming. It also stressed the significance of wireless communication technologies in 

managing sustainable agriculture.  
Ali et al. [15] outlined state-of-the-art IoT and smart farming techniques to maintain 

sustainably produced crops in response to critical global challenges like climate change 
and rising food demand. These technologies made agriculture more efficient, productive, 

and cost-effective by keeping tabs on crops, controlling resources, and forecasting yields. 
Although the study provided potential benefits like reduced energy use and improved 
illness management, it can fail to resolve issues like high costs and a lack of technical 

knowledge. Javaid et al. [16] proposed that many agricultural jobs, such as crop 
cultivation and soil analysis, have become much easier to accomplish with recent 

breakthroughs in AI. With the help of AI, farmers can choose the best seeds, plant them 
at the right times, and apply nutrients so that their crops are ready for market with 

minimal waste of resources. Health monitoring systems are one method that allows 
farmers to see their crops in action right now. However, obstacles such as price and lack 
of accessibility to technology still stand in the way of broad AI implementation in farming. 

Using a full-scale prototype made with IoT and 3D printing technologies, Catota et al. 
[17] proposed a solution to the issue of inefficient agricultural resource management. 

Incorporating 3D printing for sowing and the IoT Arduino Cloud for monitoring showcases 
effective cultivation by providing real-time visualization of factors. Despite showing 

efficient cultivation, limitations may include problems with scalability, cost-effectiveness, 
and the complexity of combining different systems. Riskiawan et al. [18] presented an IoT, 
AI, and LSTM-integrated automated greenhouse environmental control system. Effective 

climate monitoring and management is available. However, there may be drawbacks, such 
as difficult system integration, problems with scaling, and high costs. Some people doubt 

the system's usefulness in real-world scenarios because of its dependence on LSTM 
training data and the ongoing requirement to gather data.  

Parasuraman et al. [19] studied cutting-edge smart agriculture and Internet of Things 
(IoT) technologies to combat pesticide overuse and agricultural diseases. In addition to 
potential problems with efficiency and scalability, integrating different types of automation 

might be difficult. To be prepared for actual use, the suggested IoT plant recognition and 
watering design needs more validation and testing. The authors of the work by Sheron et 
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al. [20] proposed a technique for improving robotic object identification accuracy that they 

named projection-dependent input handling (PDIP). Despite their low error rate and 
excellent recognition ratio, there are substantial limitations due to the difficulty of PDIP 

implementation and possible difficulties in real-world application. Greater testing and 
validation of the method's reliability and adaptability are required in several settings. 
Agricultural crops can only be protected from pests and illnesses if researchers create 

more realistic, efficient, and long-lasting robotic systems based on the Internet of Things. 
Table 1 summarizes pertinent research possibilities. 

 
Table 1: Research gaps in the related works 

 

 

3. Proposed Methodology 

This device is groundbreaking in the agricultural field because AgriBotIQ solves all the 
problems farmers face today. AI and the ubiquitous Internet of Things allow AgriBotIQ to 

facilitate precision agriculture by providing real-time analysis, tracking, and management 
of crops. It can benefit many fields, such as sustainable agriculture, remote monitoring, 

pest identification, and data-driven decision-making. By helping farmers to reduce the use 
of toxic pesticides and improve the utilization of current resources, AgriBotIQ offers a 
significant effect in the battle against sustainable agriculture. Farmers can find important 

information about their land, crops, and surroundings with this instrument. This data 
will allow them to make better judgments and run their business more efficiently. And 

when it comes to AI, IoT, and robotics, AgriBotIQ is way out in front, paving the way for 
all sorts of exciting new developments in the farming industry. Contemporary farmers 

concerned about their influence on the environment, efficiency, and productivity should 
purchase an AgriBotIQ. 

 

 

Research gap Description 

Constrained 

Research on 

Integration 

Many surveys only discuss IoT, AI, and robots separately without 

delving further into how these technologies work together to 

safeguard crops. 

Absence of 
Validation in 

the Real 

World 

Due to a lack of empirical validation of suggested solutions in actual 
agricultural contexts, additional research is required to confirm 

their efficacy on farms. 

Flexibility 

and 
scalability 

Farm size and location must be considered when considering the 

potential applications of IoT-based robotic systems in agriculture. 

Efficiency 
and economy 

Little has been said about the practicality and cost-effectiveness of 
establishing and maintaining IoT systems, particularly for 

smallholder farmers. 

The 

adaptation 

and 
acceptance of 

users. 

To grasp the adoption process, one must put oneself in the farmers' 

shoes and try to comprehend their difficulties. Future research 

should focus on expanding user-centric design. 
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3.1 AgriBotIQ system architecture 

 

 

Fig 1. Overall structure of AgriBotIQ system 

The aforementioned method for crop protection is based on substantial study; the goal 
is to provide a persuasive and practical answer. The proposed layout uses state-of-the-art 
technology and various data-gathering techniques, as seen in Figure 1. The IoT is the 

starting point of the digital revolution for farming with respect to weather monitoring and 
irrigation. Soil temperature, moisture, and humidity are the three variables that these 

sensors measure in real-time. In addition, AI techniques are combined with visual signs 
and patterns to detect plant diseases early on, allowing for faster treatment. As a 

component of production evolution, studying the development and change of crops is 
crucial. The many components of the AI and robotics-based crop protection system work 
together to improve farming:  

Data collection module: The system uses various sources to generate insights, including 
weather predictions, soil sensors, satellite imagery, and digital bug traps. With this much 

data, we can foretell when weeds will sprout, pests will attack, diseases will spread, and 
even the weather. This module aims to teach students how to create and understand 

machine learning models so that they can programmatically analyse data and get valuable 
insights. The technology deciphers the results of ML models and delivers actionable 
insights to aid in decision-making.  

The decision-making module uses AI technologies to assess the collected data and select 
optimal crop protection strategies. Several aspects are taken into account when assessing 

the efficacy of pesticide applications. These include the crop type, its developmental stage, 
the severity of the insect, weed, and disease, and underlying ecological and risk factors. 

Furthermore, we consider possible increases in pesticide resistance and legislative 
limitations.  

Autonomous robots with sensors and cameras can use this technology in their robotic 

modules. We can create the most efficient crop protection processes conceivable by 
teaching these robots to detect and eradicate pests, diseases, and weeds using AI 

algorithms. The monitoring module, which employs AI to make necessary adjustments in 
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real-time, can track crop protection techniques' effectiveness. Maintaining this awareness 

guarantees peak performance and permits prompt actions whenever necessary.  
The user interface module offers a user-friendly platform for stakeholders, including 

agricultural scientists, farmers, and others, to communicate with one another. Customers 
can enter data through this interface to tailor the results to their requirements. The 
system's recommendations and outcomes are displayed.AI-powered robotic crop 

protection devices provide more effective crop protection with less chemical input. The 
system provides data-driven suggestions for crop protection strategies to encourage 

sustainable agricultural practices and maximize crop yields. 

3.2 AI-based crop protection 

As mentioned above, the ant colony optimization (ACO) algorithm is one of the 

AI techniques that the AgriBotIQ software can employ. Optimization of routes and 
resource allocation are two examples of problems that can benefit from ACO's 

metaheuristic optimization method when combined with more conventional ML and DL 
techniques. In the subsequent AgriBotIQ cases, for instance, ACO may prove useful: 

Given that AgriBotIQ may have to travel across fields to gather data or apply treatments 
in a farming context, enhancing its route-planning capabilities is crucial. ACO, which 
considers distance, terrain type, and obstructions, can help find the best routes for 

AgriBotIQ. By leaving pheromone trails along possible paths that the ant colony traverses, 
an ACO may direct AgriBotIQ to its most efficient channels. 

As a result of scarce assets (time, energy, and pesticides), AgriBotIQ has to take every 
precaution to save its crops. In order to optimize resource allocation, ACO constantly 

assigns resources to tasks or places according to the way successfully they accomplish 
the targeted results. Monitoring pheromone trails generated by synthetic ants might help 
AgriBotIQ determine the optimal locations to sprinkle irrigation or pesticide. 

The best crop protection may be provided by AgriBotIQ if it looks for pests, monitors 
the crop's circumstances, and applies remedies at preset intervals. Prioritize tasks 

according to the crop's stages of growth, the environment, and available labour. Apply 
ACO to find the best times and sequence to complete each task. According to ACO, 

AgriBotIQ can quickly adapt to new scenarios by constantly studying and changing 
pheromone traces linked to varied workforce schedules. 

Protecting crop operations might be made more efficient and successful with the help 

of ACO, provided AgriBotIQ could optimize route strategy, resource allocation, and task 
scheduling. The behavior of the algorithm that determines the paths taken by the colonies 

of a plant protection robot will be examined during this study using the ant colony 

approach. Assume the ant's code identifier is 𝑎 (𝑎 = 1,2,3 … . . 𝑛) and the node it has 

traversed is 𝑡𝑎𝑏𝑢𝑎  (𝑎 = 1,2,3 … … 𝑛) for recording purposes. The ant colony's movements may 

update the 𝑡𝑎𝑏𝑢 table in real-time, helping it make informed judgments about what to do 
next. The pheromones concentration on the line between nodes 𝑖 and 𝑗 at time 𝑡 is 𝜏𝑖𝑗, given 

that m is the total population of ants and 𝑖𝑠𝑑𝑖𝑗 (𝑖, 𝑗 = 0,1, … . 𝑚 − 1). Starting with a uniform 

pheromone concentration, the program randomly places the ants. The ant's chance of 
hopping from a single node to the next at any particular moment is 0: 
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𝑄𝑖𝑗
𝑎 = {

𝜏𝑖𝑗
𝛼 𝜂𝑖𝑗

𝛽
(𝑡)

∑ 𝜏𝑖𝑗
𝛼 (𝑡).𝜂𝑖𝑗

𝛽
(𝑡)𝑎𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎 ,𝑗𝜖𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎,0,𝑜𝑡ℎ𝑒𝑟

                                  (1) 

In equation (1), out of all the variables, allowed 𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑎 = {𝑑 − 𝑡𝑎𝑏𝑢𝑎} denotes all the 
walking nodes from which the ants can choose. D stands for the combination of nodes. 

𝛼 Represents the information heuristic factor, and its determination primarily depends on 

the ants' ability to work together in a group. 𝛽 reflects the expectation heuristic factor. 

𝜂𝑖𝑗 Denotes the heuristic function, typically obtained through 𝜂𝑖𝑗 =
1

𝑐𝑖𝑗
. While ant path 

planning is underway, many pheromones are created. Therefore, to prevent information 

redundancy, updating the data after the planning process is finished is necessary. The 

intended data for route (𝑖, 𝑗) is modified at the moment 𝑡 +  𝑛 to the following equation (2), 
𝜏𝑖𝑗(𝑡+𝑚)=(1−𝜌)×𝜏𝑖𝑗(𝑡)∆𝜏𝑖𝑗(𝑡)

∆𝜏𝑖𝑗(𝑡)=∑ ∆𝜏𝑖𝑗
𝑎 (𝑡)𝑛

𝑎=1
}                                                              (2) 

The volatile component of the pheromone is denoted by 𝜌 ∈  (0, 1), and the pheromone 

increment is denoted by∆𝜏𝑖𝑗(𝑡). Three distinct models can be derived from various methods 

of updating information. One way to represent the periant system model is given in below 
equation (3) as,  

∆𝜏𝑖𝑗
𝑎 = {

𝑀

𝐿𝑎
, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑦 𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
  

∆𝜏𝑖𝑗
𝑎 = {

𝑀

𝑐𝑖𝑗
, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 1𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
                                                                                                                                                                           

                                                                                                                               (3) 
 

The model of an ant colony can be stated as the following equation (4) as,  
 

∆𝜏𝑖𝑗
𝑎 = {

𝑀, 𝑡ℎ𝑒 𝐴𝑡ℎ𝑎𝑛𝑡 𝑤𝑎𝑙𝑘𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡 𝑎𝑛𝑑 𝑡 + 1𝑖𝑗

0, 𝑜𝑡ℎ𝑒𝑟
                                (4) 

The entire node distance is represented by 𝐿𝑎, and the pheromone is denoted by 𝑀. The 
model formula shows that the periant system revises the pheromone after each cycle, while 

the ant density and population systems update it after each step. Consequently, the 
periant system model is the most trustworthy. 

The plant protection robot's route planning follows a procedure comparable to an 

ACO by its fundamental premise. The first step in the process was positioning the plant 

protection robots in the optimal working position. The starting positions of n robots are 

denoted as𝑅1(𝑥1, 𝑦1), 𝑅2(𝑥2, 𝑦2), … , 𝑅𝑛(𝑥𝑛, 𝑦𝑛).   The ant-algorithm approach used the starting 

point to calculate the planning path. As in equation (5).  

𝑇𝑖𝑗(𝑡 + 1) = (1 + 𝜌) × 𝑇𝑖𝑗(𝑡) + ∆𝑇𝑖𝑗                                                                                     (5) 

where 𝜌 is the pheromone evaporation rate (0< 𝜌<1) and ∆𝑇𝑖𝑗 is the amount of pheromone 

deposited. 𝑇𝑖𝑗(𝑡 + 1) Is the pheromone level, on the path between nodes 𝑖 and 𝑗.  
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 By running simulations, we can determine the optimal routes for our plant 

protection robots, as in equation (6).  

𝑃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 (𝑇1, 𝑇2, … , 𝑇𝑚)                                                                                              (6) 

Where 𝑚 is the possible paths and 𝑇1, 𝑇2, … , 𝑇𝑚  are their respective completion time. 

 The initial plant protection robot can be directed to follow the second crop 

protection robot's path if it is the quickest, and the fastest of the m paths can be chosen 

as the best way to reach the target site. This directing path of the robots can be represented 

as in equation (7). 

𝑅𝑖 = 𝑃𝑗
∗                                                                                                                         (7)  

The plant security robot group's route planning is now a reality thanks to analogies. 

3.3  IoT-based crop protection 

Soil, microclimate, and especially crop sensing have all been enhanced by the Internet 
of Things (IoT), which has caused a sea change in crop tracking from a qualitative, 

experience-based process to a quantitative, data-driven one. Thanks to technologies built 
on the Internet of Things, farmers can now track the growth and health of their crops with 

pinpoint accuracy. The ability to monitor pest attacks and plant illnesses in real-time is 
another benefit it provides to farmers. Internet of Things (IoT) tagged sensors provide 
researchers and farmers with valuable real-time data for smart control of crop cultivation, 

irrigation, fertilizer application, and plant environment.  
Network of Things (IoT) smart crop tracking systems rely on field-placed sensors to 

collect data on various environmental factors, such as soil moisture, temperature, 
humidity, and nutrient levels (shown in Fig.2). A common networking feature across these 

sensors allows real-time data transfer to a central cloud-based platform. After collecting 
data from these sensors, data analytics tools like machine learning are used to learn about 
the crop's growth rate, prospective yield, and overall health. This data can help farmers 

with irrigation, insect control, and harvesting decisions. 
When administrators and farmers use wireless sensor technology, they may be notified 

when equipment fails and begin troubleshooting immediately. Implementing an 
automated repair tool can result in energy savings, faster data processing, and better 

actuation.  
Modern agricultural practices are seeing the rise of unmanned aerial systems (UAS) 

connected to the Internet of Things (IoT). These systems enable farmers to capture aerial 

images of their fields in real time while streamlining data processing and storage. Several 
agricultural environmental characteristics can be effectively monitored using IoT-based 

systems. These include air temperatures, light levels, soil moisture, moisture, CO2 
concentration, pH levels, and water usage for crop efficiency. 
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Fig 2. IoT-based smart sensors application for crop production 

 

4. Results and discussion 

The dataset details the methods used to cultivate crops for every region, season, and 
kind of soil [21]. The data encompasses a wide range of crops, including cotton, onions, 

potato, wheat, rice, ragi, groundnuts, sugar cane, and banana, as well as pertinent 
agricultural and environmental aspects. Important characteristics covered by the dataset 

include cropping period (kharif, rabi, or entirety year), place of residence (state), cultivated 
area, type of soil (e.g., alluvial ground, black soil), chemicals application rates (high, low, 
an average), soil pH, ambient temperature (low, high, average), use of fertiliser levels (low, 

high, an average), price of crops, and amounts of rainfall (high, low, average). 

   1)  Recognition ratio 

 
The accuracy rate, or recognition ratio, measures how well the AgriBotIQ system 

distinguishes between healthy, diseased, or nutrient-deficient plants. It is the proportion 

of plants that the system properly identified relative to the overall number of plants that 
were evaluated. Mathematically, recognition ratio (RR) is referred to as the following 

equation (8), 

𝑅𝑅 =
𝑡𝑃

𝑡𝑃+𝑓𝑃
                                                               (8) 

In equation (8), the total number of plants that the AgriBotIQ system accurately 

classified as healthy, diseased, or nutrient-deficient is called 𝑡𝑃 (True Positives). The 
number of plants that the AgriBotIQ system mistakenly deemed healthy, diseased, or 

nutrient-deficient is called 𝑓𝑃 (False Positives).  The AgriBotIQ system must maximize true 
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positives and decrease false positives to provide reliable findings. A false positive is a 

situation in which the system mistakenly labels a plant in good health as diseased, 
nutrient-deficient, or reverse. But a true positive occurs when the system correctly 

diagnoses the plant's health.  

 

Fig 3. Analysis of recognition ratio based on the proposed AgriBotIQ 

After calculating the recognition ratio, agricultural researchers and specialists can 

assess how the AgriBotIQ system predicts a user's nutritional and health status. A higher 
recognition ratio enhances the efficiency and lifespan of agricultural production (Fig. 3), 
proving the system's effectiveness and dependability in managing crops and protection. 

    2)  Processing Time 

The time indication illustrates the median length for the AgriBotIQ technology to 

analyze the data, find trends, and provide valuable insights. Very quickly and efficiently, 
the system completes the work measured by it. The method described in equation (9), 

which shows the sum of all execution times divided into the total of all observations, can 
be used to estimate the mean time for processing (AT) of the AgriBotIQ system: 

 

AT =
∑ 𝐷𝑖

𝑡
𝑖=1

𝑡
                                                                                                           

                                                                                                                                (9) 

Equation (9) shows that the total number of measurements is represented by 𝑡, and that 

each observation, indicated as𝐷𝑖, requires iterations of the AgriBotIQ technology. Much 
work goes into each observation, including collecting data, cleaning it, identifying features, 

identifying trends, and producing insights. The data collected by the AgriBotIQ system 
may be examined via various methods such as artificial intelligence (AI), machine learning 
(ML), and others. To provide growers and agricultural professionals with timely insights, 

the AgriBotIQ platform may use efficient algorithms and appropriate system architecture 
to decrease the median processing time.  

60

70

80

90

100

1 2 3 4 5 6 7 8

A
cc

u
ra

cy
 v

al
u

es
 (

%
)

No. of itrations/samples(#)

IoT, AI, and LSTM [18] PDIP [20] IoT and 3D printing [17] AgriBotIQ



Journal of Artificial Intelligence and Data Science Techniques 

ISSN: 3029-2794  

Volume 01 Issue 02 (June) 2024  

  

  

 
  

 

11 

 

 

 
Fig 4. Processing time variations for different tasks based on the AgriBotIQ system 

Reduced processing times improve cultivation and protection, as seen in Figure 4. This 
allows for quicker decision-making and reactions as crop conditions fluctuate. Scientists 

and engineers may be able to render AgriBotIQ smarter and more affordable if they monitor 
the median time measure closely. Improved farming methods that are friendlier to the 

environment will develop from that amount. 

    3)  Error rate 

An error rate provides a reliable indication of the number of times the AgriBotIQ system 

makes faults in crop analysis and monitoring. The manner in which the system works 
demonstrates whether it can distinguish between healthy, damaged, and nutritionally 

deficient crops. We may find the error rate (ER) by dividing the overall number of 
misidentifications by the total number of occurrences, as stated in Equation (10). 

𝐸𝑅 =
𝑓𝑃+𝑓𝑁

𝑡𝑃+𝑓𝑃+𝑓𝑁+𝑡𝑁
                                                                 

                                                                                                                              (10) 

The acronym for the rate with which a specific state, like "healthy," "sick," or "deficient 

in nutrients," is correctly identified as "𝑡𝑃" in Equation (10). Can the state get the absence 

label correct some proportion of the time? True Negatives, abbreviated as𝑡𝑁, have that 

meaning. "Fake positives," or𝑓𝑃, is the frequency with which an incorrect diagnosis is 
produced when none exists. 

When a condition is mistakenly thought to be absent when it is present, this is called 

"False Negative," or𝑓𝑁. A false positive occurs when the AgriBotIQ technology mistakenly 
identifies abundant nutrients in healthy plants or excess nutrients in unhealthy plants. 

Such an occurrence occurs during the assessment and monitoring of crops. A false 
negative occurs when the system mistakenly labels a plant in good health as ill or lacking 

nutrients, even when the plant is perfectly OK. 
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Fig 5. System Analysis of error rate in AgriBotIQ system 

According to the study, the AgriBotIQ system may be evaluated for accurate and wrong 

identifications by determining the mistake rate. Fig. 5 shows that a system with reduced 
error rates is more trustworthy and accurate regarding crop tracking and assessing 

activities. Researchers and developers may want to examine and tweak the error rate 
parameter to improve the AgriBotIQ system. Based on this data, better techniques for crop 
preservation and management will be accessible. 

 

5. Conclusion  

 Finally, AgriBotIQ demonstrates how internet-connected robotic devices powered by 
artificial intelligence (AI) could revolutionize farming by guaranteeing a consistent harvest. 

Smart sensors and AI allow AgriBotIQ to offer constant crop monitoring and precise care. 
There will be less need for chemical fertilizers and agricultural labor, and production can 

be increased with little harm to the environment thanks to this technique. As a group, 
farmers may use machine learning and actual time alarms to guarantee food safety for 
future generations. To make farming more profitable and less detrimental to the 

surroundings, research suggests that the IoT platform, automation, and AI could 
completely change the industry. Modern technology comes with a hefty price tag, and there 

are many more other factors to consider, such as the need for extensive technical support 
and laws regarding cyber security. Studying methods to solve agronomic problems in the 

future should center around building better AI algorithms, bringing costs down, and 
creating more trustworthy systems. The three sectors—government, industry, and 
academia—must collaborate to swiftly adopt these revolutionary technologies if the food 

industry remains healthy. 
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