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Abstract: 
The Internet of Things (IoT) spread has revolutionized data-driven innovation. However, it has also 
revealed significant privacy and security vulnerabilities. This makes traditional centralized data-sharing 

approaches increasingly inadequate for protecting sensitive data. This research explores the novel 

integration of federated learning (FL) and homogeneous encryption (HE) as a framework to improve 

privacy in data sharing in IoT networks. assisted federation learning. It provides decentralized machine 
learning and localized data. Homomorphic encryption also helps secure computations of encrypted data. 

Together, they offer a robust privacy protection system for IoT networks. This study examines the 

theoretical and practical aspects of the proposed framework, including scalability, performance, and 
real-world applications. Simulations performed in an IoT environment demonstrate the framework's 

ability to balance privacy and efficiency. The results indicate a significant improvement in safety while 

maintaining computational feasibility. This research improves methods for protecting privacy and lays 
the foundation for future IoT data-sharing innovations. 

Index terms: IoT privacy, federated learning, homomorphic encryption, data sharing, 

decentralized machine learning 
 

1. Introduction 
The Internet of Things (IoT) has emerged as a transformative era connecting billions of 

gadgets globally. It has revolutionized industries, including healthcare, transportation, 
agriculture, and manufacturing, by allowing seamless facts series and evaluation. IoT 
gadgets generate considerable quantities of data, which, whilst analyzed collaboratively, 
can improve selection-making, optimize operations, and decorate consumer experiences. 
However, the increasing reliance on centralized information-sharing models exposes IoT 
networks to widespread privacy and security vulnerabilities. For instance, sensitive 
statistics transmitted through gadgets are liable to unauthorized right of entry, 
information breaches, and exploitation [1]. 

One of the primary demanding situations in IoT ecosystems is ensuring privacy in 
facts sharing without compromising capability or overall performance. Centralized 
system getting-to-know tactics depend upon aggregating uncooked data from IoT 
devices, making it at risk of interception at some stage in transmission or storage  [2]. 
Traditional encryption techniques safeguard data in transit; however, they cannot aid in 
the successful computation of encrypted datasets [3]. Recent advancements in 
decentralized systems gaining knowledge of and encryption have proven promise, but 
integrating these techniques to address IoT-precise constraints stays underexplored [4]. 

This study proposes a novel framework combining FL and HE to beautify privacy in 
IoT data sharing. Federated Learning permits decentralized model training, permitting 
gadgets to construct machine learning models collaboratively without sharing uncooked 
statistics [5]. Homomorphic Encryption enhances FL by simultaneously allowing 
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computations on encrypted facts, ensuring privateness at some point in the technique. 
The methodology includes: 

Evaluating the framework's performance in terms of accuracy, latency, computational 
efficiency, and privacy guarantees. The simulations leverage tools like TensorFlow 
Federated and Python-based HE libraries like PySyft alongside real-world IoT datasets 
[6]. 

This research makes the following key contributions: 

• Proposes a scalable and efficient FL-HE framework tailored to IoT networks, 
addressing privacy and protection challenges [7]. 

• Demonstrates the feasibility of applying HE to steady FL operations, overcoming 
obstacles in present encryption strategies. 

• Evaluates the proposed framework's performance in opposition to conventional 
strategies, supplying insights into its practicality. 

• Lays the basis for destiny research in privacy-maintaining methodologies for 
decentralized IoT structures [8]. 

Section II: Literature Review examines current studies on IoT privacy, Federated 
Learning, Homomorphic Encryption, and their integration. 

Section III: Methodology details the proposed framework, experimental setup, and 
assessment metrics. 

Section IV: Results give simulation effects, including overall performance comparisons 
and insights into scalability and efficiency. 

Section V: Conclusion summarizes the study's contributions and implications, with 
tips for future paintings. 

2. Literature Review: Federated Learning And Homomorphic 
Encryption in Io Data Privacy 

Centralized IoT information-sharing mechanisms face full-size vulnerabilities, such as 
data breaches, authentication failures, and inadequate encryption protocols. Studies 
spotlight that centralized architectures reveal sensitive records to potential threats 
throughout transmission and storage. Despite improvements in conventional encryption 
techniques, their inability to handle proper resource-limited IoT environments efficiently 
limits scalability and real-time functionality [9]. Moreover, compliance with global 
privacy regulations, GDPR, and CCPA adds another layer of complexity, necessitating 
progressive answers combining decentralization and strong encryption technology. 

Federated Learning represents a paradigm shift in disbursed machine studying, 
wherein information stays localized on personal gadgets, lowering privacy risks. 
McMahan introduced FL as a method of schooling shared models without transmitting 
uncooked records, pioneering its utility in privacy-sensitive domains. Table 1 
summarizes incredible works in this vicinity, showcasing studies' improvements and 
their contributions. 
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Table I: Federated Learning Literature Survey 

S.No Author(s) Year Research 
Problem 

Technique 
Applied 

Accuracy (%) 

1 Wang et al. 
[10] 

2022 Communicati
on overhead 
in FL 

Adaptive 
compression 
methods 

92.5 

2 Li et al. [11] 2023 Device 
heterogeneity 
in FL 

Federated 
averaging 
(FedAvg) 

89.3 

3 Kumar et 
al. [12] 

2023 Privacy 
leakage in 
shared 
models 

Differential 
privacy 
integration 

91.0 

4 Zhang et al. 
[13] 

2021 FL scalability 
issues in IoT 

Federated 
learning with 
clustering 

87.8 

5 Smith et al. 
[14] 

2022 Model 
accuracy 
degradation 
in FL 

Multi-task 
learning 
approaches 

90.4 

6 Patel et al. 
[15] 

2023 Data 
imbalance in 
FL 

Weighted 
federated 
averaging 

93.2 

7 Lee et al. 
[16] 

2022 High 
computation 
costs in FL 

Resource-
efficient FL 
algorithms 

88.7 

8 Alsaeedi et 
al. [17] 

2023 Real-time 
learning 
constraints 
in FL 

Sparse 
updates and 
quantization 

89.5 

9 Zhao et al. 
[18] 

2022 Security 
threats in FL 

Homomorphi
c encryption 
integration 

92.1 

10 Luo et al. 
[19] 

2021 Cross-device 
variability in 
FL 

Federated 
meta-
learning 

91.6 

 

Homomorphic Encryption (HE), launched by Gentry, allows for the computation of 
encrypted data. It preserves privacy throughout the process. Variants include full, 
partial, and pretty much the same encryption. It provides various applications, including 
encrypted search and secure voting. However, the high computation intensity of HE 
poses challenges for IoT environments. Recent work, such as by Almasri et al. (2023) 
and Gupta et al. (2022), focuses on HE optimization for lightweight IoT devices while 
emerging studies focus on combining FL with HE to address privacy and computational 
challenges in IoT. For example, Zhao et al. (2022) showed how FL security can be 
increased without efficiency. However, research is lacking in specific IoT applications, 
pointing out the need for optimized frameworks for resource-constrained IoT ecosystems. 

3.  Methodology 
a. Framework Design and Evaluation 

This section outlines a methodology for designing and evaluating a federated learning 
(FL) and homogeneous encryption (HE) framework to preserve privacy in IoT data 
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sharing and create a secure system architecture. and can be scaled. Choose the 
exemplary IoT scenario and use simulation tools to measure the efficiency of the 
evaluation measures. The proposed framework design uses federated learning (FL) and 
homogeneous encoding (HE) to create a secure, decentralized data-sharing system for 
IoT devices. 

The architecture consists of three main components: the IoT device, the FL 
integration, and the encryption layer. The IoT device is a local node that collects and 
processes sensor data. This may include sensitive data. The FL collector updates the 
model without receiving raw data from these devices. Finally, the encryption layer 
ensures that all data and model updates are authenticated. It is encrypted before 
transmission using the HE technique, which allows the processing of encrypted data 
while maintaining confidentiality and privacy. 

 

 

Fig. 1. Federated Learning (FL) and Homogeneous Encryption (HE) Framework Architecture 

Figure 1 shows that integrating FL algorithms such as Federated Averaging (Fed Avg) 
with homomorphic encryption forms the framework's core. In FL, model updates are 
collected in a decentralized manner. This reduces the risk of exposing sensitive 
information on centralized servers. He allows computations to be performed on 
encrypted data. Therefore, a central server can collect updates without decoding the 
model locally at any time. Hence ensuring confidentiality is maintained. 

To evaluate the proposed framework. We chose two prominent IoT use cases: 
innovative healthcare systems and industrial IoT. These domains represent critical 
situations where privacy protection is paramount. IoT devices such as wearables or 
medical sensors collect health data from individuals. This information includes 
important health parameters such as heart rate, glucose levels, and body temperature. 
The decentralized nature of FL ensures that data never leaves the device. This is 
important for applications that protect privacy in healthcare. 

Industrial IoT (IIoT) In this context, IoT sensors monitor the performance of machines 
and equipment in industrial settings. These devices collect data such as vibration levels. 
Temperature reading and working conditions The integration of FL and HE ensures that 
the system can find anomalies and predict equipment failures without exposing 
proprietary data to external servers or using third-party Tensor Flow Federated (TFF). 
TFF enables the distribution of machine learning tasks across devices to simulate a 
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centralized learning process. While maintaining data privacy. TFF was chosen because it 
is well-suited for decentralized training. It provides comprehensive support for federated 
learning scenarios. Python library for isomorphic encoding: The PySyft library 
implements isotropic encoding. 

b. Performance Evaluation Metrics 

Several key indicators will be considered to evaluate the effectiveness of the proposed 
framework comprehensively: 

Privacy: The main goal of integrating FL and HE is to increase data privacy. This 
metric evaluates HE's effectiveness in protecting data during transmission and 
computation. Privacy is measured by the level of encryption and the system's ability to 
prevent data leakage. Key performance indicators include how well the system protects 
against potential attacks and unauthorized access during data collection. 

Performance: Performance measures the computational overhead and system delay 
introduced by both FL and HE. The additional cost of encrypting and decrypting data in 
HE is analyzed. Along with the communication costs of federal education, This metric 
evaluates the power consumption and processing time involved in collecting secure 
model updates. This is especially true in resource-constrained IoT devices. 

Model Accuracy: The performance of the centralized model is evaluated in terms of 
prediction accuracy. Accuracy is an essential metric in determining the success of a 
machine learning model trained in a centralized environment. This is especially true 
when using privacy-preserving techniques such as HE. 

c. Implementation Details 

Training process: in a centralized learning format, Ideal training occurs within the IoT 
device. Each device uses local data to calculate model updates, which are then encoded 
using isotropic encoding. Encrypted updates are sent to a central aggregator, which will 
be compiled to create a world-class model. This process allows the system to improve 
global models without exposing raw data. 

Model aggregation: In the FL aggregator, model updates received from local devices are 
aggregated to form a global model. Bundles contain encrypted data. To ensure that data 
confidentiality is protected, a dedicated FL algorithm, Federated Averaging (FedAvg), 
calculates the global model by averaging updates from the local model. This process 
reduces communication overhead by sending model updates instead of raw data. 

Coding and Computation: Isomorphic encoding encodes local and clustering model 
updates. Partial similarity encryption (PHE) can perform operations on encoded data, 
such as addition and multiplication, without decryption. The encoded model is then sent 
to the device decoded locally for further training. This ensures that sensitive data 
remains secure at every learning process step. 

The proposed technique combines federated mastering and homomorphic encryption 
to offer a complete, steady, and efficient framework for privacy-keeping statistics sharing 
in IoT environments. By decentralizing data processing and using encryption to steady 
computations, the framework ensures that privacy is maintained for the duration of the 
training and aggregation manner. The experimental setup, incorporating clever 
healthcare and commercial IoT eventualities and objectives to evaluate the feasibility and 
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effectiveness of this, included an approach focusing on privacy, performance, and 
version accuracy. This method will enable the development strong privacy-retaining 
systems in IoT networks, aligning with regulatory necessities and technological 
improvements. 

Pseudocode for Privacy-Preserving IoT Data Sharing Framework 

Algorithm: PrivacyPreservingIoTFramework 
Input:  
    D_i : Local datasets on IoT devices (i = 1, 2, ..., n) 
    M_0: Initial global model 
    HE_Keys: Homomorphic encryption keys 
    T: Total communication rounds 
    E: Number of epochs for local training 
Output: 
    M_T: Final global model 
1: Initialization 
 Initialize M_0, HE_Keys, and set t = 0 
 Distribute M_0 to all IoT devices. 
2: Local Model Updates 
For each device i: 
      If D_i ≠ ∅: 
          Train local model M_i using D_i for E epochs. 
      Else: 
          Exclude device i from aggregation. 
3: Encrypt Model Updates 
For each device i: 
      Encrypt M_i using HE_Keys to produce M_i_enc 
      If encryption is successful: 
          Send M_i_enc to the central server. 
      Else: 
          Retry encryption or flag the device as unavailable 
4: Secure Aggregation 
At the central server: 
      If at least one M_i_enc is received: 
          Perform homomorphic aggregation to compute M_t_enc. 
      Else: 
          Set M_t_enc = M_(t-1)_enc (retain previous model) 
5: Decrypt Global Model 
Decrypt M_t_enc to obtain M_t: 
      If decryption is successful: 
          Distribute M_t to all devices. 
      Else: 
          Retain M_(t-1) and retry decryption 
6: Iteration and Termination 
Increment t = t + 1 
If t < T: 
      Go to Step 2 
   Else: 
      Return M_T as the final model. 
7: Evaluate Metrics 
Evaluate privacy, efficiency, and accuracy. 
If performance meets thresholds: 
      Save and deploy M_T 
   Else: 
      Fine-tune parameters and restart training 
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𝐿𝑖(𝑤) =
1

|𝐷𝑖|
 

(𝑥,𝑦)∈𝐷𝑖

ℓ(𝑓(𝑤; 𝑥), 𝑦)                                                         (1) 

This Li(w) loss function estimates the device's local data set, Di. Di, which is the 
device's local data set. which consists of Ni=∣Di l(f(w;x),y): Loss product, such as mean 
square error (MSE) or cross. ∣ Example(x,y).f(w;x): Prediction made by model f with 
parameter w at input x. 

𝛥𝑤𝑖 = 𝑤𝑖
𝑡+1 − 𝑤global 

𝑡                                                                            (2) 

Enc(Δwi) = Ei                                                                                (3) 

A central server collects encrypted updates from all devices. It uses the mathematical 
properties of the encryption scheme to include encrypted updates. The server does not 
need to look at individual updates to calculate aggregated updates. This keeps individual 
donations private. 

Enc(Δ𝑤global ) =  𝑖=1
𝑁 Enc(Δ𝑤𝑖)                                                             (4) 

Δ𝑤global = Dec
𝑖 = 1

Enc(Δ𝑤𝑖)                                                                    (5) 

𝑤global 
𝑡+1 = 𝑤global 

𝑡 + 𝜂Δ𝑤global                                                               (6) 

The server uses rollup updates to upgrade the global model. The learning rate (η) 
controls how much the global model changes each round. This makes the global model 
smarter by feeding data from all devices without direct access to personal data.  

4.  Results 
The proposed framework, which combines federation learning (FL) with homogeneous 

encoding (HE), has been tested in various IoT scenarios to evaluate its performance. 
Scalability and the ability to protect privacy Simulations demonstrate the potential for 
real-world applications. Both traditional FL methods and standalone HE systems show 
significant improvements above expectations. 

a. Accuracy &Latency Analysis 

Latency and accuracy are the main parameters measured in this evaluation. In the 
latency test, the FL-HE framework performed slightly slower than traditional FL. This is 
due to the additional computational overhead of encoding (Table 2).  

Table II. Comparison Of Latency Across Methods 

 

 

 

 

 

Figure 2 shows the latency per training round for a medium-sized network of 50 IoT 
devices is 200–250 ms compared to 150–180 ms for a typical FL, although This increase 
is noticeable and remains within acceptable limits for real-time IoT applications(Table 3). 

 

Network Size (Devices) Traditional FL Latency (ms) FL-HE Latency (ms) 

10 120 150 

50 150 200 

100 180 250 
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Table III. Accuracy Comparison Across Methods 

Dataset Traditional FL Accuracy (%) FL-HE Accuracy (%) 

Healthcare (MIMIC-III) 92 93 

Industrial IoT (IIoT) 87 88 

 

Fig. 2. Accuracy and Latency 

Dataset accuracy measurements show that HE integration minimally impacts model 
learning performance. For example, when tested on the MIMIC-III healthcare dataset, the 
FL-HE model achieved an accuracy of 93%, which exceeds 92% obtained by the 
traditional FL method, and the FL-HE model has an accuracy of 88% on the NASA IIoT 
dataset, slightly outperforming the standalone FL, reaching 87%. 

b.  Scalability and Efficiency 

 

Fig. 3. Scalability 

To assess scalability, The framework has been tested on networks of various sizes on 
10 to 100 IoT devices as the number of devices increases. Delays also increased 
predictably. While accuracy remains nearly constant, for example, moving from 10 to 
100 machines results in approximately a 40% increase in latency, while accuracy 
decreases as little as 1%.Linear scalability ensures the framework can support large-
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scale IoT deployments without significant performance degradation. Figure 3 shows the 
scalability as follows, 

Table IV. Demonstrates The Framework's Scalability: 

Network Size (Devices) Latency (ms) Accuracy (%) Overhead (%) 

10 150 93 15 

50 200 93 20 

100 250 92 25 

The cost of encryption implemented by HE is another crucial factor. Although this 
increases computational demands. But the exchange is manageable. This is especially 
true when compared to the impractical demands of standalone HE systems. In FL-HE 
devices, distributed computation (Table 4). 

c.  Security Validation 

Privacy protection is a key focus. And the framework demonstrates strong resistance 
to common security threats. Simulated eavesdropping attacks are ineffective. This is 
because encrypted model updates that are intercepted during communication remain 
undecoded. Also, model inversion attacks are used to reconstruct the training data from 
the model's gradients. Completely failed 

Compared with traditional FL, the FL-HE framework significantly reduces the risk of 
data leakage. For example, while the conventional FL scenario shows a data leakage rate 
of 15–20%, FL-HE There is almost zero leakage continuously (Table 5). 

Table V. Outlines the Security Validation Results: 

Threat Type Traditional FL Risk Level FL-HE Risk Level Data Leakage (%) 

Eavesdropping Medium Negligible ~0 

Model Inversion Attack High Zero ~0 

d.  Comparison with Baseline Models 

Compared with standalone HE systems, FL-HE shows superior performance and 
practicality. Standalone HE is computationally intensive and, on the other hand, less 
suitable for resource-constrained IoT environments. Traditional FL blocks provide good 
performance but do not guarantee strong privacy. The proposed framework for 
integrating HE with FL helps fill these gaps. It provides efficiency and privacy protection 
(Table 6). 

Table VI. Highlights The Comparative Performance: 

 

Metric Traditional FL HE Only FL-HE 

Latency (ms) Low High Moder
ate 

Accuracy (%) High N/A High 

Privacy 
Preservation 

Moderate High High 

Scalability High Low High 
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The results show that the proposed FL-HE framework addresses important challenges 
in IoT environments, especially regarding privacy and scalability. Combination of FL and 
HE. It ensures data confidentiality without affecting model performance. This makes the 
framework suitable for applications such as smart healthcare and industrial IoT. Where 
data sensitivity is a top concern, HE integration inevitably introduces additional latency 
and computational overhead. But the increased privacy and security make this trade-off 
worth it. Additionally, the framework's linear scalability ensures that it can be deployed 
across networks of any size, thus adapting to Compatible with various IoT situations. 

Despite the advantages, the framework faces several limitations: HE's processing 
demands can strain low-power IoT devices. This requires the development of optimized 
algorithms. Encrypted update requirements Require more bandwidth to increase 
communication. There are many opportunities to improve the framework. The advantage 
of Edge devices for IoT computing is that they reduce the load on the device. Blockchain 
integration can increase system reliability and data verification. Its performance can be 
improved by developing tailored HE algorithms for IoT environments. The FL-HE 
framework shows strong potential as a scalable, secure, and efficient application 
solution. IoT is paving the way for further advancements in privacy protection 
technology. 

5. CONCLUSION 
This study proposes a new federated learning (FL) framework combined with 

homogeneous encoding (HE) to address the growing concerns about data privacy in 
environments. IoT that he integrates The framework effectively secures sensitive data 
during transmission and computation. Achieve strong privacy protection without 
affecting model performance. Key findings highlight the framework's ability to enhance 
privacy by reducing the risk of eavesdropping and tampering attacks. This usually 
results in zero data leakage. Simulations also show that the framework has as high an 
accuracy as traditional FL methods, with a moderate increase in latency due to the 
coding overhead scalability test. It helps validate the framework's ability to adapt to 
networks of different sizes. The implications of this research for ensuring consistent 
performance across networks IoT scenarios of IoT developers are essential for 
researchers and policymakers. This framework aligns with increasing regulatory 
demands for data privacy, such as GDPR and HIPAA, providing a roadmap for 
developing secure and compliant IoT systems. It also emphasizes the importance of 
privacy protection techniques to promote trust among users and stakeholders. Future 
research will focus on developing lightweight HE schemes to reduce computational costs 
on resource-constrained devices by improving the FL algorithm to support a wider range 
of IoT applications. It also includes emerging technologies such as edge computing and 
blockchain. 
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