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Abstract: 
Federated learning (FL) protects statistics privateness whilst facilitating cooperative model education 

throughout dispersed records sources. Privacy protection at some stage in model aggregation is still a 
prime impediment, even though. This paper suggests a robust aggregation framework for federated 

gaining knowledge that mixes homomorphic encryption and differential privateness to shield touchy 

facts while model updates are being made. The technique applies differential privacy techniques to 

feature noise to gradients to protect privacy from viable adversaries. Furthermore, homomorphic 
encryption makes steady computations over encrypted information feasible, which continues 

confidentiality even as aggregating facts. Significant effects display that the advised method maintains 

version accuracy on par with traditional federated learning, notably reducing the chance of record 
leakage. Our findings exhibit that privacy and overall performance may be successfully balanced by 

combining homomorphic encryption with differential privateness in realistic federated getting-to-know 

eventualities. To summarise, this framework protects against privacy troubles in federated getting-to-
know and starting the door for secure, personal machine learning packages. 
Index terms: Federated Learning; Privacy Preservation; Secure Aggregation; Differential Privacy; 

Homomorphic Encryption 
 

1. Introduction 
In a generation where massive quantities of facts are generated through numerous 

gadgets and systems, the want for collaborative devices to get to know models has 
become increasingly prominent. Federated Learning (FL) is a disbursed technique to 
system mastering that enables multiple statistics resources to collaboratively educate a 
shared model without centralizing their raw information [1]. This decentralized method 
is beneficial in eventualities wherein data privacy is paramount, consisting of healthcare, 
finance, and cell tool packages. By maintaining localized records, FL mitigates privacy 
dangers and regulatory demanding situations associated with records centralization [2]. 
However, while FL allows for disbursed model training, it faces enormous privacy issues, 
especially throughout the aggregation procedure. At the same time, information from 
multiple resources is mixed to replace the worldwide model. This aggregation section can 
divulge version updates to capability adversaries, leading to privacy vulnerabilities and 
ability information leakage [3]. 

Although federated gaining knowledge addresses certain privateness troubles with 
layout aid, protective touchy facts at some stage in model aggregation remains a vital 
venture. In traditional FL, neighbourhood version updates are transmitted to a crucial 
server, which may be aggregated to refine the global model [4]. However, this process can 
make data vulnerable to interception and reconstruction assaults, especially in 
antagonistic settings. Hence, there may be a pressing need for advanced strategies that 
do not beautify privacy inside the FL aggregation method but maintain model accuracy.  
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Without a strong privateness-keeping framework, federated getting-to-know's ability 
for stable, large-scale packages is restricted, mainly in touchy fields where facts leakage 
may want to have severe results [5]. 

This look introduces a singular aggregation framework that mixes homomorphic 
encryption (HE) with differential privateness (DP) to deal with this privateness task in 
federated studying. Homomorphic encryption allows computations to be completed on 
encrypted data, ensuring the information remains personal even during processing [6]. 
Using homomorphic encryption, the proposed framework secures the aggregation of 
model updates without decrypting them, appreciably decreasing the threat of facts 
leakage. In addition to encryption, differential privacy is implemented to the version 
gradients to shield man or woman information factors [7]. By including noise to 
gradients for the duration of version updates, differential privateness reduces the 
likelihood of reconstructing non-public facts, making it more difficult for adversaries to 
infer specific statistics from version updates. This twin approach of HE and DP allows 
the framework to protect privacy while permitting correct model training [8]. 

• The following are the contributions of this research to government investigations 
and data privacy. 
New Summary of New Privacy Protection: This test presents the current policy of 
static federal studies that combine equal confidentiality with differential 
confidentiality to protect data for some unspecified periods, e.g. the future of the 
collection gives 

• Privacy-Coccuracy Trade-off: Experimental results show that the system 
provides model accuracy comparable to trend-federal analysis strategies while 
at the same time significantly reducing the risk of statistical leakage, balancing 
privacy protection and version-overall performance. 

• Enhanced privacy in adversarial environments: The two-layered approach of the 
system provides strong protection towards privacy attacks, ensuring that 
government mastering is possible because it must be implemented in operation 
in critical areas such as health and economics 

Structure of the paper: Section 2 studies government learning and privacy protection 
methods and identifies their shortcomings. Section 3 describes the proposed scheme in 
detail, including isomorphic encryption and differential privacy in general. The 
experimental design, dataset, and metrics for the design evaluation are presented in 
Section 4. Section 5 presents the results, including the model accuracy and comparison 
of privacy protection with basic FL methods. Section 6 discusses the identified official 
learning privacy-security mechanisms and their implications. and future directions. This 
study provides a secure, privacy-protected process for sample collection that enhances 
official learning. Isomorphic encryption and differential privacy address privacy concerns 
and mean optimal performance can be maintained without compromising security. This 
work enables safe and effective integrated learning for sensitive machine-learning 
projects at scale. 
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2. Literature Review 
Zhang et al. (2022) proposed a multi-key homogeneous encryption (HE) approach to 

solve shared allocation problems in integrated learning. This approach improves privacy 
by enabling devices to use strong encryption keys, providing the possibility of secure 
data transmission between devices or stronger versions with derived functionality, 
overall specificity, and increased privacy integrity when shared with a server [9]. Xie et 
al. (2023) examined the effectiveness of combining HE and close differential privacy (DP) 
in reducing computing costs in FL. Neighbourhood DP adds another layer of privacy, 
ensuring that this hybrid approach protects the aggregation server from receiving 
updates to the raw version [10]. 

Froelicher et al. (2022) developed a decentralized, federated learning method using the 
ElGamal ellipse curve cryptosystem to perform a statistical privacy analysis. This 
method reduces vulnerability and increases security in shared areas by avoiding reliance 
on a single encryption key [11]. 

Gupta and others. (2023) enhance federated learning by incorporating homogeneous 
encryption into the FederatedAveraging algorithm. This approach balances 
computational complexity and privacy requirements, increasing productivity while 
maintaining consistent accuracy across data centres [12]. 

In 2023, Yu and friends proposed an innovative hybrid privacy strategy for federal 
identity, blending homogeneous encryption with differential privacy. This method offers 
a practical option for real-world learning situations, as it tackles the limitations of 
theoretical attacks and yields results on par with current standards [13].  

Luo et al. (2023) used selective HE and gradient dilution to solve FL bandwidth issues. 
This option gives a unique change-off between safety and performance, allowing strong 
model performance and efficient privacy protections [14]. 

A flexible HE tools with movable encryption masks was demonstrated using Khan and 
buddies to enhance encryption in federated gaining knowledge throughout 2022. This 
tool maintains excessive accuracy across many statistics by dynamically editing 
encryption parameters to strike the precise balance between protection and computing 
necessities [15]. 

3. Methodology 
a. Proposed Framework 

The proposed framework combines homogeneous encryption (HE) and differential 
privacy (DP) to improve data security and privacy in federated learning (FL). He 
guarantees that Calculations can be performed directly on the encoded gradient without 
decoding. Maintain the confidentiality of information throughout the process. It 
leverages a coding scheme that enables mathematical operations such as addition and 
multiplication. It can be carried out safely. This ensures the server collects encoded 
gradients from multiple clients without accessing sensitive information. The main 
advantage of HE is the reduction of risks associated with decoding data during 
computation. This reduces the threat of data leakage. 
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Differential Privacy (DP) adds another layer of security by identifying interference 
before it is sent to the server. This obfuscation prevents adversaries from inferring 
sensitive information about individual data points. Even if model updates are blocked. 
The noise level in the DP mechanism is carefully calibrated. It is controlled by the 
privacy budget to ensure that the trade-off between model accuracy and privacy 
protection is optimized. This two-tiered approach ensures robust protection against both 
passive and active privacy threats. 

b. System Architecture 

The proposed FL system follows a client-server model with the following workflow: 

c. Client-Side Operations: 

A local machine trains the model on the data and calculates the gradient. 
Ø Isomorphic encoding is used to encode local gradients. According to the privacy 

budget ε, measured noise is added to the encrypted gradient to protect sensitive 
information further. Each client calculates gradients based on the local data set. This 
can be expressed by: 

                                                              𝑔𝑖 = ∇ℒ(𝑤; 𝐷𝑖)                                                                              (1) 
Here, ℒ is the loss function, and 𝑤 represents model parameters. 

i. Server-Side Operations: 

➢ The central server aggregates encrypted gradients from all clients using 
homomorphic addition. 

➢ Decryption occurs only after aggregation to refine the global model, ensuring 
individual gradients remain confidential. 

ii. Communication and Feedback: 

➢ The server updates the global model and transmits it back to the clients for 
further training, iterating until convergence. 

The workflow integrates secure encryption and privacy-preserving mechanisms at 
every step, as depicted in Figure 1. 

Encryption 

Each client encrypts their gradient 𝑔𝑖 using a public key. The computed gradients are 
encrypted using a public key before transmission to the server: 

                                             𝐸(𝑔𝑖) = 𝐸𝑛𝑐𝑝𝑘(𝑔𝑖)                                                         (2) 

This ensures the gradient remains confidential during transmission. 
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Fig 1: Overview of the federated learning workflow integrating HE and DP for secure aggregation. 

The framework employs specific mathematical models and algorithms for HE and DP. 
Let the local dataset of client 𝑖 be denoted as 𝐷𝑖 and its corresponding gradient update as 
𝑔𝑖. The system implements the following processes: 

Noise Injection 

Noise 𝑛𝑖 is added to the encrypted gradient to achieve differential privacy: 

𝑔𝑖
′ = 𝑔𝑖 + 𝑛𝑖 , 𝑛𝑖 ∼  Laplace (

Δ𝑓

𝜖
)                                                                                      (3) 

where Δ𝑓 is the sensitivity of the gradient and 𝜖 is the privacy budget. 

To ensure differential privacy, calibrated noise is added to the encrypted gradients: 

𝑛𝑖 ∼  Laplace (
Δ𝑓

𝜖
)                  (4) 

The server aggregates the encrypted and noisy gradients received from clients as follows: 

𝐸(𝐺) = ∑  𝑁
𝑖=1 𝐸𝑛𝑐𝑝𝑘(𝑔𝑖

′)                                                                                                   (5) 

 
The aggregated result is decrypted using the private key to refine the global model. The 
aggregated result is decrypted using the private key  : 

𝐺 = 𝐷𝑒𝑐𝑠𝑘(𝐸(𝐺))                                                                                                                                     (6) 

This yields the updated global model without exposing individual gradients. 

Pseudocode 1 outlines the encryption, noise injection, and aggregation processes: 

def secure_aggregation(client_gradients, public_key, private_key, epsilon): 

    encrypted_gradients = [] 

    For g in client_gradients: 

        noise = laplace_noise(scale=1/epsilon) 

        encrypted_gradient = encrypt(g + noise, public_key) 

        encrypted_gradients.append(encrypted_gradient) 

    aggregated_gradient = sum(encrypted_gradients) 



 

 

Journal of Artificial Intelligence and Data Science Techniques 

ISSN: 3029-2794  

Volume 02 Issue 01 (February) 2025 

  

  

  

 

16 

 

    global_model_update = decrypt(aggregated_gradient, private_key) 

    return global_model_update 

Datasets 

The experiments use datasets from privacy-sensitive domains such as healthcare (e.g., 
MIMIC-III for patient records) and finance (e.g., credit card transaction datasets). These 
datasets are selected for their relevance in evaluating privacy-preserving machine 
learning techniques. The diversity in data types and sizes ensures the framework's 
robustness across various use cases. 

iii. Evaluation Metrics 

The framework's performance is assessed using: 

1. Model Accuracy: Measures the classification or prediction accuracy of the global 
model. 

2. Privacy Leakage Risk: Quantifies the probability of adversaries reconstructing 
sensitive data. 

3. Computational Overhead: Evaluate the additional resources required for 
encryption and aggregation. 

Implementation Details 

The framework uses Python with libraries such as PyTorch for model training and 
PyCrypto for encryption. Homomorphic encryption parameters, such as key size and 
security level, are tuned to balance computational efficiency with security. Differential 
privacy parameters, including ϵ\epsilonϵ and sensitivity Δf\Delta fΔf, are chosen based 
on the dataset's characteristics and desired privacy levels. 

4. Results 
a. Privacy vs. Accuracy Trade-offs: 

In the case of federated learning (FL), the proposed framework combines isomorphic 
encryption (HE) and differential privacy (DP) to enhance privacy protection during 
encryption. Collect models This integration introduces a trade-off between privacy and 
accuracy. Where the main concern is the impact of the privacy-preserving mechanism on 
the model's performance) in data that is encrypted with counting occurring without 
decryption. This ensures that data remains confidential even during clustering. However, 
this comes at a computational cost. This may reduce the accuracy of the model. This is 
due to the overhead of encrypted operations. 

On the other hand, differential privacy (DP) introduces noise into the model during 
training to guarantee that no data point will significantly affect the overall results. This 
ensures the privacy of each individual. But it also reduces the accuracy of the final 
model. The trade-off between privacy and accuracy in the proposed framework can be 
seen in the comparative analysis of traditional federal learning methods (without HE and 
DP) and methods combining these privacy mechanisms. 
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Table I: Accuracy Vs. Privacy Trade-Off 

Privacy 
Mechanism 

DP Noise Level HE Encryption Strength Accuracy (%) 

None N/A N/A 95.4 

HE Only N/A Moderate 92.1 

DP Only Low N/A 91.5 

HE + DP High High 88.3 

This graph shows the relationship between model accuracy and the strength of the 
privacy mechanisms (DP volume and HE encoding) and how increasing privacy reduces 
model accuracy (Table 1). 

b. Comparative Analysis with Traditional FL Methods: 

Traditional FL methods rely on model parameters without encryption or privacy 
protection. However, these methods can produce highly accurate models due to their 
direct use of the data. However, personal information will be revealed during the 
integration process. In contrast, using HE and DP in the proposed framework increases 
privacy by making data unreadable to attackers during transmission and bundling. 
However, this results in decreased efficiency, especially the trade-off between loss of 
accuracy due to these privacy mechanisms by testing, which can be quantified. 

i. Impact of HE and DP on Model Accuracy and Privacy: 

An essential outcome of this framework is its ability to deal with the trade-off between 
privacy and accuracy. Different trade-offs between accuracy and privacy can be observed 
by changing the noise level in DP and the encoding parameters in HE. Increasing noise 
in DP improves privacy but reduces the accuracy of the model. Strong HE encoding 
further reduces accuracy. However, data privacy is guaranteed. These factors must be 
carefully balanced depending on the application's needs and whether preserving privacy 
or maximizing model performance is more important (Table 2). 

Table II: Comparative Analysis Of Model Accuracy With HE And DP 

Privacy Mechanism DP Noise Level HE Encryption Strength Accuracy (%) 

None N/A N/A 95.4 

HE Only N/A Moderate 92.1 

DP Only Low N/A 91.5 

HE + DP High High 88.3 

 

c. Performance Analysis: 

i. Scalability and Computational Efficiency: 

The scalability of the proposed framework is an essential factor in determining its 
practical implementation. This is especially true in large FL settings, where inherent 
isotropic encoding creates a significant computational burden. The framework's 
scalability is evaluated based on its ability to maintain performance as the number of 
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participants in the FL system increases. Computational efficiency is another key 
concern. Because HE and DP mechanisms require additional computational resources, 
for example, tasks involving encrypted data require significantly more resources than 
normal computation. Despite its advantages, the proposed framework has several 
limitations. One of the main challenges is the complexity of use. Integrating HE and DP 
requires a unique algorithm—significant computational resources that can make 
deployment in resource-constrained environments more complex. Scalability is also a 
concern. This is because increasing the number of participants in the FL network may 
lead to performance bottlenecks, especially regarding communication and computation 
time. Another limitation is privacy leakage in some situations, such as when the volume 
in DP is too low, or the encryption scheme in HE is not strong enough. These challenges 
highlight the need for continuous optimization in framework design to maintain an 
optimal balance between privacy and authenticity. 

Despite scalability challenges, the proposed framework also shows relatively high 
resilience to privacy attacks. Even on a large scale, combining HE and DP creates an 
additional layer of security. Making it difficult for adversaries to roll back updates to 
engineering models or gain insights into individual data points is essential—in 
applications where data privacy is paramount, such as in healthcare or finance (Table 
3). 

Table III: Scalability Performance 

Numberof 
Participants 

Training Time 
(hrs) 

Computation Load 
(Flops) 

Privacy Attack Resistance 
(%) 

10 5.2 1.5 x 10^12 98 

50 12.5 3.5 x 10^13 95 

100 25.4 7.1 x 10^13 93 

500 78.2 1.2 x 10^15 90 

This graph shows the relationship between the number of participants in the FL 
system and the required training time or computational resources. It highlights the 
scalability challenges of the framework. 

ii. Resilience to privacy attacks: 

The framework's ability to resist various privacy attacks is evaluated regarding its 
strength in attack inference and model ranking. Combining HE and DP it introduces 
several obstacles for attackers. This requires breaking the encryption and reverse 
engineering the noise added to the data. These privacy protection methods ensure that 
individual data points cannot be easily reconstructed even if ideal parameters are 
revealed (Table 4). 
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Table IV: Resilience to Privacy Attacks 

Privacy Mechanism Attack Type Resistance (%) 

None Model 
Inversion 

60 

HE Only Model 
Inversion 

85 

DP Only Model 
Inversion 

80 

HE + DP Model 
Inversion 

98 

 

This graph will demonstrate the framework's resistance to various types of privacy 
attacks, comparing the effectiveness of HE and DP in preventing inference and model 
inversion attacks (Table 5). 

Table V: Performance Analysis And Scalability 

Number of 
Participants 

Training Time 
(hrs) 

Computation Load 
(Flops) 

Privacy Attack Resistance 
(%) 

10 5.2 1.5 x 10^12 98 

50 12.5 3.5 x 10^13 95 

100 25.4 7.1 x 10^13 93 

500 78.2 1.2 x 10^15 90 

 

Fig 2: Performance Analysis and Scalability 

Figure 2 shows that this research's key finding is the effectiveness of combining HE 
and DP for secure FL collection. Integrating these two privacy mechanisms creates a 
robust framework for protecting data privacy. During model training and clustering, this 
combination ensures that data subjects do not have to compromise their privacy. Even 
in collaborative learning environments, this has important implications for real-world 
applications. This is especially true in healthcare, finance, and any domain involving 
sensitive personal data. 



 

 

Journal of Artificial Intelligence and Data Science Techniques 

ISSN: 3029-2794  

Volume 02 Issue 01 (February) 2025 

  

  

  

 

20 

 

Several future directions for improving the research framework are proposed. First, 
exploring advanced encryption techniques beyond traditional HE that can increase 
computational efficiency without compromising privacy, for example, Fully 
Homomorphic Encryption (FHE). This allows the calculation of arbitrary encrypted data. 
Privacy and performance can be further improved.   Moreover, developing lightweight HE 
and DP mechanisms can significantly reduce privacy-preserving FL's computation and 
communication costs. 

5. CONCLUSION 
In this research, we propose a new framework that combines homogeneous encryption 

(HE) and differential privacy (DP) to enhance privacy and security in federated learning 
(FL) systems. The main Contributions of this framework is the ability to maintain data 
privacy during model collection and training. This is important in collaborative machine-
learning settings. Where data privacy is a key concern, combining HE and DP, our 
framework ensures that each data point is protected from disclosure. It also allows for 
efficient model training on sets of distributed data. An essential finding of this research 
is the privacy-accuracy trade-off in the proposed framework, even though HE and DP 
offer strong privacy guarantees. However, the accuracy of the model is slightly reduced. 
However, by adjusting the parameters of HE and DP, this advantage can be adjusted 
according to the specific needs of different applications. Moreover, our framework 
demonstrates the ability to Scale for large centralized systems. Although challenges 
related to computational efficiency still exist, We also observe that combining HE and DP 
significantly improves resiliency against privacy attacks. This makes it robust to model 
prediction or inversion attacks. The impact of this work is profound. This is especially 
true for sensitive areas such as healthcare, finance, and government, where privacy 
protection is required. Machine learning is necessary not only, but there are also 
regulatory requirements. The framework can potentially empower secure and privacy-
preserving applications in these areas. This enables collaboration in a data-driven 
fashion without compromising individual privacy. This approach can serve as a basis for 
the future.  
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