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Abstract: 
 
Brain tumor characterization is vital for accurate diagnosis, treatment planning, and prognosis in oncology. 

Traditional imaging techniques like CT (Computed Tomography), MRI (Magnetic Resonance Imaging), and 

PET (Positron Emission Tomography) provide valuable information. Still, each modality has spatial 
resolution, sensitivity, or functional insight limitations. This reduces the precision of personalized treatment 

strategies and makes it challenging to assess treatment response and early detection. This study proposes 

a novel framework, namely MMIETC, integrating multi-modal imaging (MMI) data such as MRI, CT, PET 
using state-of-the-art methods for machine learning, including convolutional neural networks (CNNs) for 

automated feature extraction and tumor segmentation and random forests (RF) for Enhanced Tumor 

Characterization (ETC). Image processing algorithms like wavelet transforms will also be employed for 

enhanced segmentation and feature fusion. The study will focus on designing a unified computational 
framework that can accurately extract anatomical, functional, and molecular features from the imaging 

data, improving diagnostic precision. Integrating multi-modal imaging with CNNs for deep learning-based 

segmentation and random forests for predictive analysis is expected to yield significantly improved tumor 
characterization. The proposed approach should enhance tumor margin delineation, detect intra-tumor 

heterogeneity, and identify biomarkers for more accurate diagnostic and prognostic evaluation. These 

advancements will lead to better treatment planning, more personalized therapies, and improved patient 
outcomes in oncology. 
Keywords: Multi-model imaging, machine learning techniques, convolutional neural networks, 

random forest, feature extraction, biomarker identification, feature fusion. 

1. Introduction  

With approximately 400,000 cases recorded in the US between 2012 and 2016, 

primary diseases affecting the brain and spinal cord are among the top cancer incidence 

rates among patients of all ages [1]. Brain tumors can develop either from native brain 

tissue or from metastasis, a process by which malignant cells from other organs travel 

to the brain, where they accumulate abnormally. A thorough approach is required to 

diagnose brain tumors, which often includes biopsies, imaging studies, to determine 

the tumor's grade and features [2]. The development of more accurate neuroimaging 

methods has led to a dramatic improvement in the noninvasive characterization of brain 

tumors throughout the last five years. Tumor-type discrimination has been achieved 

using a variety of methods used in MRI scans, such as dynamic susceptibility contrast, 

perfusion imaging, magnetic resonance fingerprinting, apparent diffusion coefficient 

(ADC) value mass spectroscopy, and others [3]. Both the initial diagnosis and the 

monitoring of brain tumors rely heavily on cross-sectional imaging techniques. The 

usual course of treatment includes CT and MRI for tumor detection, mapping, extent 

determination, and posttreatment monitoring [4]. In the medical image domain, imaging 

segmentation is employed to partition the image into two sections. Spitting out an image 

representation makes it more suitable for analysis. This is because there are separate 
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parts to the picture [5]. Due to their late onset and lack of symptoms, gliomas are 

difficult to identify in their early stages. For most patients, the key to a better prognosis 

is the precise removal of these malignant tumors [6]. 

The detection of tumors in human organs relies heavily on segmentation. 

Conventional approaches could be more effective in many cases. Deep learning 

techniques enable automatically optimized feature extraction, which allows them to 

surpass conventional machine learning-based approaches, which have demonstrated 

outstanding performance in complicated issues [7]. In fields as diverse as medical image 

analysis, face recognition, object identification, and picture categorisation, CNN has 

accomplished exceptional results across various fields, reshaping the image recognition 

landscape [8]. Automated feature extraction from images is within the capabilities of a 

CNN. A convolutional neural network (CNN) can achieve good recognition accuracy with 

very minimal training material [9]. Due to improvements in medical picture 

classification technology, new disease features and underlying mechanisms have been 

discovered, which has also led to more efficient and accurate illness detection. 

Consequently, these technological advancements have greatly improved therapy 

methods and patient survival rates [10]. The potential for imaging biomarkers to further 

precision diagnostics is exciting. Quantitative picture acquisition and analysis are 

closely related to creating imaging biomarkers [11]. As researchers drew from many 

different fields, such as communications, mathematics, computer science, signal 

processing, quantum physics, image processing, and more, wavelet transformation 

emerged as one of the most intriguing developments of the past decade [12]. 

This work proposes a new computational framework, MMIETC, incorporating multi-

modality imaging with CNN for deep learning-based feature extraction and 

segmentation and Random Forests for predictive biomarker identification to overcome 

the limitations of conventional imaging and ensure maximum utilization of the full 

potential of MMI. This paper will present a framework for a holistic understanding of 

brain tumor characteristics by fusing anatomical, molecular, and functional 

information from MRI, CT, and PET modalities. The resultant insights will lead to 

improvement in tumor margin delineation, detection of intra-tumor heterogeneity, and 

predictive biomarkers diagnostic and prognostic assessment. 

The key significance of this study is 

• The framework integrates MRI, CT, and PET to provide a holistic view of brain tumors, 

overcoming the limitations of individual imaging modalities.   

• CNNs extract features from multi-modal data to ensure efficient and automated 

tumor segmentation, reducing manual efforts and increasing reproducibility.   

• Level set methods and wavelet transforms are applied to enhance segmentation 

precision, refining tumor margins and detecting intra-tumor heterogeneity.   

• To identify key biomarkers, RF performs feature selection and predictive analysis, 

aiding in tumor progression assessment and personalized treatment strategies.   

• The framework integrates CNNs and RF to improve diagnostic and prognostic 

precision, enabling early detection and better patient outcomes.   

The follow-up sections of this work are structured as follows. Finding and 
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characterising brain tumours is covered in Section II. The suggested procedure is 

detailed in Section III. Datasets, analysis of the suggested approach, and substantial 
experimental findings are presented in Section IV. The conclusion of this work is in 

Section V. 

2. Related works 

Lee et al. [13] suggested combining sophisticated three-dimensional tumor models with 

artificial intelligence (AI) to improve tumor microenvironment replication and enable 

individualized therapy. Combining artificial intelligence (AI) with cancer-on-chip models 

and microfluidic devices enable high-throughput, real-time tracking of carcinogenesis and 

biophysical tumour features. According to the results, AI outperforms conventional two-

dimensional techniques in improving the accuracy of tumor model creation. Nonetheless, 

a significant drawback is the difficulty of precisely simulating tumor heterogeneity and 

microenvironment dynamics, which is still a problem in applications of customized 

treatment. 

By applying sophisticated MRI techniques for preoperative glioma assessment, the 

GliMR COST action seeks to overcome the limitations of conventional MRI in detecting 

diffuse gliomas and tumor genotyping (Hangel et al. [14]). Techniques including chemical 

exchange saturation transfer (CEST), magnetic resonance spectroscopy (MRS), and MR-

based radiomics were among those that were investigated. Tumor characterisation is 

improved by these techniques, although there is still a lack of clinical confirmation. 

Despite their full potential, the difficulties in standardizing and interpreting these 

sophisticated MRI techniques make integrating them into standard clinical practice 

difficult. 

Foti et al. [15] demonstrated the cancer screening with dual-energy computed 

tomography (DECT) offers promising results by allowing for detailed tissue 

characterisation using two separate X-ray energy bands. Several methods have been 

developed to enhance lesion identification, material composition analysis, and reduce 

iodine dose and artefacts. These methods include iodine density maps, virtual non-

contrast (VNC) pictures, and virtual monoenergetic imaging (VMIs). For tumor diagnosis, 

staging, and post-treatment assessment, DECT is useful. Although very promising, there 

are some drawbacks, such as the requirement for additional clinical validation and 

possible interpretation variability in images. 

Hirschler et al. [16] aimed to increase knowledge of sophisticated MRI methods for 

preoperative glioma evaluation beyond traditional MRI, which cannot identify tumor 

genotype and has trouble defining diffuse gliomas. Diffusion-weighted MRI, magnetic 

resonance fingerprinting, and dynamic susceptibility contrast are some of the methods 

covered. Although tumor characterisation is improved by these techniques, there is still a 

lack of clinical confirmation. Because of problems with standards and practical 

implementation, integrating these sophisticated MRI techniques into standard clinical 

practice is the primary obstacle. 

The application of AI to PET imaging with tracers other than [18F] F-FDG is examined 

by Eisazadeh et al. [17], with particular attention paid to radionics features obtained from 
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tracers such as [18F] F-FET, [18F] F-FLT, and [11C] C-MET. These tracers help patients 

with gliomas discover lesions, characterize tumors, and predict their chances of survival. 

There is also potential for using AI-based PET-volumetry to direct adaptive radiation 

treatment. However, despite the improved diagnostic performance provided by PET-

derived radiomics, the necessity for additional validation and standardization across 

various tracers and tumor types limits its practical applicability.  

An ensemble model for heterogeneous deep learning was suggested by Jadoon et al. [18] 

to forecast breast cancer using multi-modal data, including copy number variation (CNV), 

clinical, and gene expression data. The model consists of three stages: feature extraction, 

feature stacking, and prediction using a random forest. The feature extraction takes place 

using convolutional neural networks (CNNs) for clinical and gene expression data, and 

DNNs for CNV data. The results demonstrate higher accuracy compared to homogeneous 

and single-modal models. Nevertheless, drawbacks include difficulties in combining and 

maximizing the many data kinds across modalities. 

To circumvent the challenges of merging pathological images and genetic data, Waqas 

et al. [19] proposed an attention-based multi-modal network for accurate prediction of 

breast cancer prognosis. The model successfully captures interactions between different 

modalities and within modalities using intra-modality self-attention and inter-modality 

cross-attention modules, all without generating high-dimensional features. An adaptive 

fusion block improves the integration of these relationships. When compared to current 

approaches, the results demonstrate improved prediction performance. However, the 

intricacy of modelling both linkages and guaranteeing practical computation still 

hampered enormous applicability. 

Khalighi et al. [20] explored how artificial intelligence (AI) revolutionises neuro-oncology, 

specifically gliomas, emphasising how AI can improve diagnosis, prognosis, and treatment. 
AI models that use imaging, histopathology, and genetic data perform better than human 
assessments regarding accuracy and molecular detection, which could lead to a decrease 

in invasive diagnostic procedures. Methods vary from deep learning to standard machine 
learning, with difficulty integrating data and dealing with biases. Although AI holds 

promise for enhancing individualised treatment plans, ethical considerations regarding 
openness and fairness remain obstacles. 

 

3. Proposed Scheme 

The proposed MMIETC framework uses multimodal imaging, namely MRI, CT, and PET 
data, and advanced machine learning techniques for brain tumor characterization. The 
steps involve image acquisition, followed by registration and pre-processing to align the 

data, after which normalization occurs. The automatic feature extraction uses CNNs, while 
wavelet transforms enhance the spatial-frequency features. These modalities' features are 

combined to provide complementary information on anatomy, function, and molecular 
composition that could enhance tumor margin delineation and intra-tumor heterogeneity 

detection. Biomarker identification and predictive analysis are done using Random Forest 
models, ranking the prognosis and treatment response features. This integrated 
framework will feature accurate diagnosis, personalized treatment planning, and 
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monitoring of therapy outcomes with high precision. Quantification has been performed 

with different metrics, such as the Dice coefficient and Jaccard index, to ensure 
robustness. The MMIETC framework integrates deep learning-based segmentation with 

RF for predictive modeling to improve diagnostic precision, optimize therapies, and, 
ultimately, improve patient outcomes in oncology. Figure 1 shows the Methodological Flow 
of the Proposed MMIETC Approach.  

 

 
 

Fig 1. Methodological Flow of the Proposed MMIETC Approach 

 

Image registration aligns multiple imaging modalities (MRI, CT, PET) into the same 

spatial coordinate system for proper comparison and fusion.  

Preprocessing and Multi-Modal Image Acquisition: The registration of MRI, CT, and 

PET brain images and quality enhancement given further processing. In image 
registration, rigid and non-rigid transformations align the modalities in space. This can 

be done by equation (1) and (2). Normalization standardizes the range of intensities 
across images by using min-max scaling, which can be done using the equation (3). 
Noise reduction cleans artifacts through Gaussian by equation (4) or median filters by 

equation (5) to retain important details. Skull stripping will remove the non-brain 
tissues by applying Otsu thresholding and morphological operations that isolate the 

brain's region of interest. This skull stripping can be done by the equation (6). Such 
pre-processing steps ensure the data is aligned, consistent, and noise-free for further 

precise segmentation, feature extraction, and analysis of tumors. Table 1 shows the 
multimodal image acquisition and preprocessing steps.  
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Table 1 MULTIMODAL IMAGE ACQUISITION AND PREPROCESSING STEPS 

Stage Objective Method/Algorithm Equation 

Registration Align the 

images 

spatially (MRI, 
CT, PET) for 

proper fusion 

Rigid Transformation 
𝑡(𝑥, 𝑦) = [

cos 𝜃 − sin 𝜃 𝑎𝑥

sin 𝜃 cos 𝜃 𝑎𝑦
] ∙ [

𝑥
𝑦
1

]                     

                             

                                      (Eq.1) 

  Non-Rigid 

Transformation 
𝑡(𝑥, 𝑦) = (𝑥 + 𝑚(𝑥. 𝑦), 𝑦 + 𝑛(𝑥, 𝑦))     
                                                                        

                                      (Eq.2)    

Normalization Ensure 

consistent 
intensity scales 

across 

modalities. 

Min-Max Normalization 𝐼𝑛𝑜𝑟𝑚(𝑥, 𝑦) =
𝐼(𝑥,𝑦)−𝐼𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝐼𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝐼𝑚𝑖𝑛𝑖𝑚𝑢𝑚
            

 

                               (Eq.3) 

Noise 
Reduction 

Reduce 
artifacts and 

improve image 

quality 

Gaussian Filter 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = ∑ ∑ 𝐺(𝑖, 𝑗) ∙𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘

𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)                         
 
                                      (Eq.4) 

  Median Filter 𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛 ({(𝐼(𝑥 +

𝑖, 𝑦 + 𝑗))})                                   
                                      (Eq.5)       

Skull 

Stripping 

Remove non-

brain tissues to 
focus on the 

brain region 

Otsu’s Thresholding + 

Morphological 
Operations 

𝑊𝑖𝑡ℎ𝑖𝑛 − 𝑐𝑙𝑎𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝜔1(𝑡)𝜎12
(𝑡) + 𝜔2(𝑡)𝜎22(𝑡)                      
                                      (Eq.6) 

 

where 𝑡(𝑥, 𝑦) is the transformed coordinates, θ refers to the rotation angle, 𝑎𝑥, 𝑒𝑎𝑦 are 

the translations along the x and y-axis. 𝑚(𝑥. 𝑦), 𝑛(𝑥. 𝑦) are the spatial deformation fields 

along the x and y direction. 𝐼𝑛𝑜𝑟𝑚 (𝑥, 𝑦) is the normalized pixel value at (x,y) and 

𝐼𝑚𝑖𝑛𝑖𝑚𝑢𝑚, 𝐼𝑚𝑎𝑥𝑖𝑚𝑢𝑚 are the minimum and maximum pixel intensities in the image. 𝐺(𝑖, 𝑗) 
is the Gaussian kernel. 𝜔1(𝑡), 𝜔2(𝑡) are the probabilities of the two classes (brain and 

non-brain) and 𝜎12(𝑡), 𝜎22(𝑡) are the variances of the two classes.  

Image Processing and Feature Extraction via CNNs: Wavelet transform, and CNNs 
complement each other for multi-modal tumor image analysis. Wavelet Transform 

outlines the spatial-frequency features of multiple scales that help identify fine and 
coarse structures. Continuous wavelet transform decomposes the input signal with a 

scalable mother wavelet, as shown in equation (7). The parameters show a localized 
pattern. While this happens, CNN use filters to convolve the input image for higher-level 
spatial features, which can be expressed as in equation (8). Further, ReLU activation, 

as in equation (9), is followed by each convolution to introduce non-linearity. After that, 
layers are pooled to efficiently down-sample into feature maps while retaining essential 

details as shown in equation (10). Multi-modal data, such as MRI, CT, and PET, are 
dealt with as multi-channel inputs or parallel streams by CNNs. The softmax function 

is used in the final pixel-wise segmentation layer to classify each pixel. This is, therefore, 
good for precision in tumor detection. This hybrid approach ensures robust spatial-
frequency feature extraction along with learned spatial patterns, improving 

segmentation accuracy for complex medical images. Figure 2 shows this feature 
extraction using CNN. 
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Fig 2. Feature Extraction using CNN 

 

Table 2 KEY COMPONENTS OF THE IMAGE PROCESSING AND FEATURE EXTRACTION VIA 
CNNS 

Section Description Equation 

1.Wavelet 
Transform 

It extracts the information on 
multiscale spatial and frequency. It 

utilizes a mother wavelet 𝜑. It 

decomposes the signal at multiple 

scales, extracting the patterns. 

𝑊(𝑟, 𝜏) =
1

√𝑟
∫ 𝑓(𝑡)𝜑∗ (

𝑡−𝜏

𝑟
) 𝑑𝑡

∞

−∞
        

                             (Eq.7) 

2.CNN 

Convolution 

Operation 
 

It applies filters over the input image 

for feature extraction with spatial 
features. Kernel K[m, n] learns 

patterns such as edges and textures. 

M[l, m] = ∑ ∑ 𝐼[𝑙 − 𝑥, 𝑚 − 𝑦] ∙𝑦𝑥

𝐾[𝑥, 𝑦]                     (Eq.8) 

3.ReLU 

Activation 

Function 

Introduces non-linearity in CNNs 

where the negative values are set to 0, 

helping the network learn complex 
patterns. 

𝐴𝐹(𝑥) = max (0, 𝑥)               
                               (Eq.9) 

4.Max-

Pooling 

Operation 

Downsampling feature maps reduce 

their dimensions while retaining the 

significant features with improved 

computational efficiency. 

𝑃[𝑥, 𝑦] = max {𝑀[2𝑥, 2𝑦], 𝑀[2𝑥 +
1,2𝑦], 𝑀[2𝑥, 2𝑦 + 1], 𝑀[2𝑥 + 1,2𝑦 +
1]}                                     
                              (Eq.10) 

5.Pixel-Wise 
Segmentation 

   It classifies every pixel as either a 
tumor or non-tumor using softmax for 

multi-class segmentation. 𝐾 

represents the number of classes, 

while wc  represents weights. 

𝑃(𝑦𝑖 = 𝑐|𝑥𝑖) = (exp (𝑤𝑐
𝑇𝑥𝑖 + 𝑏𝑐))/

(∑ exp (𝑤𝑘
𝑇𝑥𝑖 + 𝑏𝑘)𝐾

𝑘=1 )                
                              (Eq.11) 
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where f(t), refers to the Input signal (image intensity in 1D) 𝜑∗  is the Mother wavelet, 

𝑟 is the Scale parameter (frequency), 𝜏 refer to the Translation parameter (spatial shift). 

𝑀[𝑙, 𝑚] is the Feature map value at position (𝑙, 𝑚), 𝐼[𝑙, 𝑚]Input image pixel value at (𝑙, 𝑚), 
and 𝐾[𝑥, 𝑦]   is the Convolution kernel of size (𝑥, 𝑦). 𝑃(𝑦𝑖 = 𝑐|𝑥𝑖 ) is the Probability of pixel 

𝑖 belonging to class 𝑐.  

Tumour Segmentation: U-Net is widely applied for brain tumour segmentation 
because its encoder-decoder structure is ideal for capturing fine-grained details of 

tumours. The successive convolution and pooling in the encoder capture the image's 
spatial features, hence tracing patterns like the edges of tumours, necrosis, and 
oedema. Upsampling in the decoder restores feature maps to reconstruct details in a 

segmentation map. Skip connections between the encoder and decoder guarantee 
accurate localization since they can preserve the spatial information required during 

accurate boundary detection of tumour sub-regions. The architecture is, hence, effective 
in multi-class segmentation for the labelling of active tumours, necrotic tissue, and 

oedema using scarce annotated brain imaging data. The equation (12) can do this. 
 

𝐹𝑙 = 𝐴𝐹(𝐶𝑙 ∗ 𝐹𝑙−1 + 𝑏𝑙)               (Eq.12) 
 

where 𝐹𝑙 is the Feature map at layer l, 𝐶𝑙 refers to the Convolution filter for layer l, 𝑏𝑙 

is the Bias term, 𝐴𝐹 is the ReLU activation function 𝐴𝐹(𝑥) = max(0, 𝑥), and * is the 

Convolution operation.  

Multi-modal feature fusion leverages MRI, CT, and PET data together to exploit the 

complementary information provided by these images for the exact segmentation of 

tumors. This can be achieved by the equation (13). 

 

𝐹𝑓𝑢𝑠𝑒𝑑(𝑙, 𝑚) = 𝛼 ∙ 𝐹𝑀𝑅𝐼(𝑙, 𝑚) + 𝛽 ∙ 𝐹𝐶𝑇(𝑙, 𝑚) + 𝛾 ∙ 𝐹𝑃𝐸𝑇(𝑙, 𝑚)      (Eq.13) 

where 𝛼, 𝛽, 𝛾are weight parameters controlling each modality’s contribution. 

This is a merged input that provides better segmentation and captures diverse tumor 

characteristics such as structure, activity, and edema. 

Detection of intra-tumour heterogeneity is all about developing a segmented map 

in which each pixel is labelled as an active tumour-areas with high metabolic activity 

from PET, necrotic tissue, or dead tissue as determined from MRI or CT, and oedema-

swelling as observed through MRI. This pixel-level segmentation enables more 

sophisticated tumor composition analysis highly relevant to personalized treatment 

strategies, such as surgery or chemotherapy. U-Net excels in this task using skip 

connections that preserve low-level and high-level features to detect accurate 

boundaries. It is capable of multi-class segmentation, effectively labelling various tumor 

regions, hence capturing heterogeneity. U-Net is also efficient in learning from a limited 

set of annotated medical images, hence being apt for medical applications. Moreover, it 

is highly scalable for multi-modal inputs such as MRI, CT, and PET. The improvement 

in the detection accuracy is for feature fusion from various imaging sources. The 

combination provides a closer look at a reliable diagnosis with better treatment 

planning. 
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Biomarker identification with Random Forests relies on multimodal features 

segmented by CNN models, including MRI, CT, and PET, to establish a relationship 

between tumor features and clinical outcomes relative to prognosis or treatment 

response. RF is an ensemble learning technique using several decision trees on input 

features, including tumor size, shape, intensity, and texture among others, for 

classifying tumor types, such as glioblastoma and meningioma, or outcome predictions. 

It produces robust classification by aggregating the predictions over all trees through 

majority voting. The most salient strength of RFs is its ranking importance with Gini or, 

most sensitive of all, permutation importance regarding biomarkers about tumor 

behavior. Biomarkers serve to predict the growth pattern of tumors, their benignity or 

malignancy, and the sensitivity of tumors to treatment. The high dimensional capability 

of RF is superior in handling noisy and non-linear interacting data, rendering it a very 

powerful tool for biomarker discovery. Biomarkers identified help plan treatment on an 

individual basis; hence, they act to complement the precision medicine approach in the 

management of brain tumors. 

The treatment planning and decision support utilizing the MMICNNRF workflow 

integrate biomarkers, tumor characteristics, and predictive outcomes into medical 

decisions for personalized treatment. This helps to ensure that the treatment strategies 

will be appropriately tailored for tumor type, molecular profile, and prognosis to improve 

patient outcomes. 

 Personalized Therapy Recommendations: Biomarkers from segmentation and RF 

analysis will, in turn, hint at appropriate treatment modalities. For example, if 

biomarkers indicate a high level of EGFR mutation in glioblastoma, the suggested 

workflow should recommend certain specific targeted therapies such as TKIs. On the 

other hand, radiation therapy may be suggested for tumors with radio-sensitive profiles, 

while chemotherapy may be advisable for tumors with high proliferative potential. This 

facilitates not just the optimization of treatment effectiveness but also minimizes 

unnecessary intervention.  

 Monitoring and Response Evaluation: Follow-up scans are incorporated into the 
same pipeline to estimate changes in tumor characteristics after treatment. 

Longitudinal imaging data, such as MRI and PET images, provide input to the model to 
assess changes in tumor size, shape, and heterogeneity. RF models compare biomarkers 

pre- and post-treatment and emphasize responses and resistance patterns in treatment 
outcomes. In the case of resistance or failure of treatments, the system will recommend 

other alternative therapies or adjustments in the current one, such as a switch to 
immunotherapy or a change in drug dosage. 

 

 
 

 
 

4.  Result and Discussion  

a. Dataset Explanation 
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The data set was aggregated to train a cyclegan model in image-to-image translation 

and to translate CT scans to estimated higher-detail MRI scans. It contains CT and MRI 

scans of brain cross-sections gathered from listed sources and split into train and test 

subfolders for domains A and B. It is organized into a directory structure to be loaded 

in a cycle gang implementation for the image-to-image translation. 

b. Performance Metrics  

This section discusses about the comparison between the proposed MMIETC method 

with the traditional methods like CEST+MRS [14], DECT [15], AI based PET [17] using 

the metrics like dice similarity coefficient (DSC), hausdorff distance (HD), sensitivity 

(True Positive Rate), and AUC-ROC (Area Under the Receiver Operating Characteristic 

Curve). DSC gives the extent of overlap between the predicted and actual tumor regions. 

A value close to 1 indicates good segmentation. HD measures the maximum deviation 

of two sets, ensuring shape precision, especially for the surgical area of interest. 

Sensitivity: An early diagnosis is made possible by measuring the True Positive Rate, 

which indicates the model's capacity to identify all cancer-related areas. This helps to 

reduce false negatives. AUC-ROC is one of the important measures of classification 

performance where sensitivity and specificity are balanced in a way to dichotomize 

between tumor and non-tumor regions with different thresholds appropriately. 

Together, these give the complete assessment of segmentation accuracy, boundary 

precision, and diagnostic reliability that guides optimized treatment decisions. 

i) Dice Similarity Coefficient (DSC) 

The degree to which the dice similarity coefficient shows the expected tumour 

segmentation and the ground truth overlap. Precision tumor segmentation is essential 

for medical imaging diagnosis and treatment planning, making it significant. The 

following equation (14) gives the necessary mathematical expression, 

𝐷𝑆𝐶 =
2|𝑋∩𝑌|

|𝑋|+|𝑌|
                           (Eq.14) 

Where X represents the predicted tumor region, Y denotes the tumor region (ground 

truth). The DSC scale ranges from 0 to 1. Consistent segmentation is essential when 
integrating multi-modal imaging data and penalizes both over- and under-

segmentation. High DSC is necessary to accurately quantify tumors and judge radiation 
and surgical resection. In clinical contexts, it guarantees precise tumor detection, which 
enhances treatment planning. 

 

As shown in figure 3, a higher DSC value indicates a more significant overlap between 

the actual and projected tumor regions, increasing the precision of tumor margin 

delineation—a crucial step in lowering the probability of postoperative residual tumor. 

It offers an accurate way to gauge segmentation accuracy, directly affecting the quality 

of a diagnostic and treatment plan. 
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Figure 3 Tumor segmentation accuracy using DSC under various test cases. 

 

ii) Hausdorff distance (HD) 

The Hausdorff Distance determines the most significant separation between the actual 

and expected tumor boundaries. This statistic is especially helpful for assessing how 

effectively the segmentation model captures the size and shape of the tumor. 

𝐻𝐷(𝑋, 𝑌) = max {sup
𝑥𝜖𝑋

inf
𝑦𝜖𝑌

𝑑(𝑥, 𝑦), sup
𝑦𝜖𝑌

inf
𝑥𝜖𝑋

𝑑(𝑦, 𝑥)}      (Eq.15) 

 

In the above equation (25), 𝑑(𝑥, 𝑦)mentions the Euclidean distance between the points 
x and y. Hausdorff Distance (HD), which is sensitive to boundary outliers, is a measure 

of how well the predicted boundary matches the actual tumour shape, especially in 3D 
volumetric imaging. HD is essential for maintaining tumour shape accuracy, especially 
for resections around critical structures. It ensures that deviations are kept to a 

minimum to prevent influencing clinical decisions on surgical margins. HD guarantees 
precise delineation of complex tumour geometries for surgical planning. 

 

As shown in figure 4, a low Hausdorff Distance means that the expected and actual 

tumor boundaries are almost identical to ensure complete tumor excision and accurate 

surgical planning. reduces the possibility of partial resections and helps with surgical 

precision by offering comprehensive insights into the accuracy of tumor border 

forecasts. 
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Figure 4 HD analysis of Tumor Boundary Deviation Across Test Cases 
 

iii) Sensitivity (True Positive Rate) 

Sensitivity quantifies the proposed model's ability to detect actual tumor areas. It is a 

crucial parameter for ensuring that tiny or early-stage tumours are not overlooked 

because it determines the percentage of tumour pixels accurately identified as tumours. 

The following equation (16) gives the necessary mathematical expression,  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (Eq.16) 

Where 𝑇𝑃 = True Positives (Correct tumor classifications), 𝐹𝑁 = False Negatives 

(missed tumor-affected areas). 

High sensitivity guarantees the early and precise diagnosis of tumors, improving 
patient outcomes by enabling earlier interventions and more focused treatments (shown 

in figure 5). It is essential for early diagnosis and thorough treatment planning since it 
lowers false negatives and guarantees that even tiny tumor locations are recognized. 

 

Sensitivity is essential for minimising recurrence after surgery, detecting small or 

early-stage tumours, and lowering the chance of missing tumours. High sensitivity also 

makes detecting intra-tumour heterogeneity possible, promoting more focused 

treatments, and enhancing early diagnosis. Additionally, it guarantees that no tumour 

remnants remain after surgery, speeding up clinical judgement and reducing diagnostic 

delays for improved patient outcomes. 
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Figure 5 Tumor Detection Sensitivity Across Test Cases 

iv) AUC-ROC (Area Under the Receiver Operating Characteristic Curve) 

The AUC-ROC statistic compares the actual positive rate (sensitivity) with the false 

positive rate (1 - specificity) to assess the model's classification performance. It 

overviews how well the model can differentiate between tumor and non-tumor regions 

at different threshold values. The mathematical expression is shown in the following 

equation (17), 

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑇𝑃𝑅, 𝐹𝑃𝑅)𝑑𝑡
1

0
             (Eq.17) 

A high AUC-ROC value results in more accurate tumor characterization and fewer 
misclassifications (as shown in figure 6) that the model successfully distinguishes 

between tumor and non-tumor regions. Benefits include the system balancing 
identifying tumors and preventing false positives, which is crucial for confidently 

making treatment decisions. 
 

 

 
 

Figure 6 AUC-ROC Curve: Tumor Classification Performance based on the proposed MMIETC 

model. 
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AUC-ROC balances sensitivity and specificity by assessing the model's performance 

across all categorisation thresholds. Reducing misclassifications is crucial for the 
reliable classification of tumour and non-tumor regions. A high AUC-ROC score 

increases confidence in the model's accuracy across patient groups and imaging 
modalities to ensure accurate diagnosis and better treatment planning for various 
tumour forms and grades. 

 

5.  Conclusion 

The proposed framework of MMICNNRF integrates multi-modality imaging data, 
namely MRI, CT, and PET scans, through state-of-the-art machine learning techniques. 

It leverages CNNs for feature extraction and segmentation, and Random Forests for 
biomarker identification and predictive analytics. The proposed approach has the 

potential to significantly enhance tumour margin delineation, intra-tumour 
heterogeneity detection, and personalized treatment planning with consequent 
improved diagnostic precision and better patient outcomes. By fusing multi-modal 

inputs, the platform ultimately provides an all-rounded understanding of tumour 
characteristics that support clinical decision-making with correct segmentations and 

recommends therapies. Moreover, follow-up scans, which can also be processed in the 
same workflow, enable observation of the response of treatments over time and dynamic 

readjustments of the therapy approach. However, the limitation is mainly reliance on 
multi-modal high-quality datasets that are not available in every case and can affect 
performance. Future work will focus on optimization of models for more efficient 

architectures by developing lightweight algorithms that would easily be deployed in real-
world settings. Integration of explainable AI techniques is also one of the priorities to 

bring better insight into decision-making processes of the model for more clinical trust 
and adoption. 
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